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*Slant-range distance is calculated by
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Figure 7-7 Principle of the DME pulise structure (left) and DME pulse shape(right).

http://www.pn.ewi.tudelft.nl/education/et4-022/notes/h7.pdf
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Randomly variable

interval (milliseconds)
12 ps between pulse pairs \
] J/ \,
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An airborne DME interrogator transmits a stream of pulse pairs with
a fixed time interval (12 us or [rarely] 36 us) between pulses. The
interrogator randomly varies the time interval between pulse pairs.

Pulse Repetition Rate

*100-150 Pulse pairs/sec in “search mode”
25 pp/sec in “locked” mode.
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Ground- MHz MHz Ground-
based Airborne interrogations based
replies replies

Simplified diagram (not to scale) of DME bandplan. DME channels are

allocated adjacent to the 1030 & 1090 MHz SSR frequencies. Airborne
DME interrogations are answered by ground-based replies at 63 MHz.
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>900 DME ground
stations are available
throughout the USA and
adjacent Canada & Latitwie
Mexico. i@

Source: Demoz Gebre-Egziabher, J. David Powell and Per Enge, 2000, A DME- based area nav1gat10n
Systems [sic] for GP AAS interference mitigation in General Avigiiag .
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The Problem e £ e

* |n order to use DME for multilateration, we need to
know:

— What pulses are coming from each target?

— What is the Time Difference of Arrival (TDOA) of pulses
between our ground-based receiver units (RUs)?

 The problem: DME pulses are anonymous...
no identifying information is encoded in them;

* Only the aircraft knows the pattern of random time
Intervals that it inserted between pulses;

« Ground-based receivers hear a torrent of anonymous
pulses... how can they discern which pulses come
from which aircraft?
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A solution: correlation between RUs id

* The technique described here answers both questions
simultaneously:

— What signals are coming from each target?
— What is the TDOA between pairs of receivers (RUs)?

« The technique is based on correlation of pulse” streams
* The technique begins with the following observation:

Time interval between pulses in a
pulse stream is not affected by
aircraft-RU distance.

“’Pulse” is actually a pulse-pair. The 2™ pulse of the pair is ignored here for simplicity.
yap p p p
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Colocated RUs receive
the DME interrogation
simultaneously
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DME Signal Correlation Simulation
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Because RUs are colocated, a plot of their (simultaneous)
reception timestamps has slope = 1 and Y intercept =0
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from T, RU #2 receives all
pulses later than RU #1

Pulses received by RU #1 and RU #2 differ in their time of arrival
(TOA) but not the intervals between correlated pulses.
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Therefore... e

* A pulse stream received at two RUs will always
generate a correlation graph with unity slope.

« Stated differently, a valid correlation line represents a
collection of pulses whose inter-pulse intervals at the
two RUs are consistently equal.

« By isolating collections of points along a line with unity
slope, we will be finding correlated pulse streams.

« A strong maximum in points along a proposed
correlation line represents a valid correlation of
pulses from a single target.

 The Y-intercept of this line represents the TDOA
for all correlating pulses.
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Given that unity slope is
required for a valid
correlation line, find a
line with unity slope
that intersects the
maximum number of
points.
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DME 8ignal Correlation Simulation
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The Y-intercept of a line with slope = 1 represents TDOA for

; . the collection of pointg making up the line
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Peak represents the
+ “best” Y-intercept,

35 1 meaning the most
probable TDOA
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£ 20- low probability, “correlations”
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Increasing Y-intercept =

Schematic histogram representing the number of data points
(derived from DME pulses) intersected by lines with unity
slope as Y-intercept is increased
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RU #1 _ Note the different mixing of . RU#2

/ the two pulse trains \
11 1 f 1ol

time - Tﬂﬂ'# S
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Two aircraft emit pulse trains that are received differently at two RUs.
As before, the time interval between pulses for a particular aircraft
remains the same when received at each RU.
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DME Signai Correlation Sim
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Non-graphical correlation algorithm

Graphical representation is conceptually useful but not satisfactory
for computation. Here is a much faster approach:

1. Timestamp the leading edge of each pulse received at each RU.
Time can be UTC or an offset from any arbitrary T,

2. Accumulate data and send them to a central Target Processor
(TP) at a regular interval (0.25 to 0.5 second)

3. Inthe TP, initialize a 2-D matrix of pulse train times, RU #1 on
one axis, RU #2 on the other

4. Fill the matrix with calculated time differences between every X
and every Y. Most of these values are meaningless.

5. Using narrow bins, tally the frequency of occurrences of time
differences from Step 4.

6. Identify statistically significant peaks in the frequency distribution

7. Retrieve TDOA values from identified pulse correlations for
MLAT

8. Repeat steps 3-7 for remaining pairings of RUs (1-3, 2-3, etc.)
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Example matr’ik‘ 'ﬁ : ’f

Pulse arrival times at RU #2
A

Yl N

4.8622 4.8624 49281 49479 | 5.09564 | 5.14530 | 5.17500 | 5.18225 | 5.18401 | 5.20389
5.01222 -0.15 | -0.14973 | -0.08403 | -0.06424 | 0.083425 | 0.133082 | 0.162784 | 0.170028 | 0.17179 | 0.191666
5.01249 | -0.15027 <015 | -0.0843 | -0.06452 | 0.083151 | 0.132809 | 0.162511 | 0.169754 [ 0.171517 | 0.191393
5.04564 | -0.18342 | -0.18315 | -0.11745 | -0.09767 0.05 | 0.099658 | 0.12936 | 0.136603 | 0.138366 | 0.158242
5.07819 | -0.21597 | -0.2157 -0.15 | -0.13021 | 0.017452 [ 0.06711 | 0.096812 | 0.104055 | 0.105817 | 0.125693
5.09798 | -0.23576 | -0.23548 | -0.16979 -0.15 | -0.00233 | 0.047325 | 0.077026 | 0.08427 | 0.086032 | 0.105908
5.16510 | -0.30288 | -0.30261 |f-0.23691 -0.24713 | -0.06946 -0.0198 | 0.009901 | 0.017145 | 0.018907 | 0.038783
5.29530 -o.43308R>-/o,439°4 11 34732 | -0.19966 -0.15 -0.1203 | -0.11305 | -0.11129 | -0.09142
5.29625 | -0.43¢~ Interior cells contain\34828 -0.20061 | -0.15095 | -0.12125 | -0.11401 | -0.11224 | -0.09237
5.30297 | -0 calculated time differences \oyo9 | 20732 | -0.15767 | 012796 | -0.12072 | -0.11896 | -0.09008
5.32500 -0.48,\ bet.w cen pulse arrival /47703 -0.22936 -0.1797 -0.15 | -0.14276 | -0.14099 | -0.12112

times at each RU

5.33225 | -0.47003 \—DMM\‘—O.38427 -0.2366 | -0.18695 | -0.15724 015 | -0.14824 | -0.12836
5.33401 | 047179 | -047152 | -040582 | -0.38603 | -0.23837 | -0.18871 | -0.15901 | -0.15176 -0.15 | -0.13012
5.35389 | -0.49167 | -0.49139 | -0.42569 | -0.40591 | -0.25824 | -0.20858 | -0.17888 | -0.17164 | -0.16988 -0.15
5.37442 | -05122 | -051193 | -0.44623 | -0.42644 | -027877 | -0.22912 | -0.19941 | -0.19217 | -0.19041 | -0.17053
5.37466 | -0.51244 | -051217 | -0.44647 | -0.42668 | -0.27902 | -0.22936 | -0.19966 | -0.19241 | -0.19065 | -0.17077

Partial matrix,

\ Pulse arrival times at RU #1

NSensis *
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4.8622 | 4.8624 | 4.9281 | 4.9479 | 5.09564 | 5.14530 | 5.17500 | 5.18225 | 5.18401 | 5.20389
5.01222 -0.15 | -0.14973 | -0.08403 | -0.06424 | 0.083425 | 0.13 - 28 | 017179 | 0.191666
5.01249 | -0.15027 -0.15 | -0.0843 | -0.06452 | 0.083151 q/ Note the recurrent \ 0.171517 | 0.191393
5.04564 | -0.18342 | -0.18315 | -0.11745 | -0.09767 O.%//(ﬁh\ veliee <L 115 //o/ 0.138366 | 0.158242
5.07819 | -0.21597 | -0.2157 -0.15 | -0.13021 ‘/&oﬁwz 0.06711 [ /0.096812 | 0.104055 | 0.105817 | 0.125693
5.09798 | -0.23576 -0.15 | -0.00233 | 0.047325 | 0.077026 | 0.08427 | 0.086032 | 0.105908
5.16510 -0.21713 | -0.06946 -0.0198‘/ 0.009901 | 0.017145 | 0.018907 | 0.038783
ey Do any time differences -0.19966 015 | -01203 | -0.11305 | -0.11129 | -0.09142
5.29625 (e sty e -0.20061 | -0.15095 | -0.12125 | -0.11401 | -0.11224 | -0.09237

frequently than others?

5.30297 -0.20732 | -0.15767 | -0.12796 | -0.12072 | -0.11896 | -0.09908
5.32500 -0.22936 | -0.1797 -0.15 | -0.14276 | -0.14099 | -0.12112
5.33225 -0.18695 | -0.15724 -0.15 | -0.14824 | -0.12836
5.33401 -0.18871 | -0.15901 | -0.15176 -0.15 | -0.13012
5.35389 | -0.49167 020858 | -0.17888 | -0.17164 | -0.16988 -0.15
5.37442 | -05122 | -0.5TTs \2 -0.19941 | -0.19217 | -0.19041 | -0.17053
5.37466 | -0.51244 | -0.51217 -o.{ Multiple peaks in abundance> -0.19966 | -0.19241 | -0.19065 | -0.17077

NSensis

represent multiple aircraft.
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Tally (bin) frequencies of differences

Ranges Count o
<-0.20
-0.19 22
-0.18 23 *
-0.17 29
-0.16 16 /
-0.15 47
-0.14 26
-0.13 20
-0.12 28 ;
_OISa&aOW 1
a0 | 15 * / I
0.01 19 )
0.02 33 /£5 -o_xzo -o.‘15 -o.‘1o -0.‘05 Uo.oo 0.65 o.‘1o 0.‘15
0.03 29
0.04 26 / Graph of binned frequencies of time offsets derived from
0.9 20 table to the left. Note peaks at -0.15 and +0.05
0.06 34
0.07 24 ) .
008 p Binned counts of time offsets of the full
0.00 ” data set. Note discontinuity. Highlighted

0.10 o4 time differences are >20 from mean
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1 Aircraft Simulation
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Simulation with ten aircraft emitting 25 pulses/sec, received at two RUs.
1 us bin width. All ten aircraft peaks exceed 30 from the mean.

§ Sen S1S Detect the Difference




A ' U T — “Overlapping”
E - ‘J/ peaks are

discernable but at
the expense of
longer computation
time
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100 Aircraft Simulation
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Bin width 0.01 ps. This graph represents 2,500 DME pulses
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5 seconds of processed DME data

Pulse amplitude is the
mean of the two pulse

median amplitudes Remote site data stream_ch00
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1 second of processed DME data re

Remots site data stream_ch00, sec_1.TXT

B0 Pulse amplitude is the
80 mean of the two pulse
70 median amplitudes
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Each vertical line represents the center
of a pulse pair
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Remote site data stream_chQQ, sec_1.TXT
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Identical data to previous slide, plotted as circles
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Simultaneous data from two sites (5 sec.)
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Simultaneous data, two sites (1 sec.)
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1. Aircraft emits
DME pulses

2. RUs collect
pulse stream for
0.5 sec., then

reports Target
timestamps to i processor
Target Processor
(TP)

/V
3. TP correlates DME
pulse streams between
multiple pairs of RUs e X i
and derives TDOA o
values for each pair

4. TDOAs of individual pulses form
the basis for standard multilateration
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values can be
used for rough,
MLAT
position
estimates

(14 . 29 ) o ":. -' Target
Each “spike processor

represents
many
individual
pulses, which.
may be used
individually
for higher-
precision
MLAT
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Discussion o

 Questions to be investigated
— How accurately can DME pulses be timestamped?

— How brief can the reporting period be while still producing reliable
position estimates?

— How does ATDOA during a reporting period affect pulse stream
correlation?

— Multipath susceptibility
— Interrogator waveform consistency
« Implications
— Once correlated, DME pulses can be used for multilateration

— This technique could also be used to multilaterate with other forms
of pulsed emissions whose time interval is irregular
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