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Outline
• Introduction
• Measurement coordination
• Channel characterization & modeling

– Overview
– Mobile channel measurements

• Tx @ ATCT, Rx in Mobile Van
• Tx @ Ground Site, Rx in Mobile Van

– Channel model construction
• Summary and future work
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Introduction
• Commercial aviation is growing
• In 2003, Congress & Executive Office formed the Joint 

Planning and Development Office (JPDO) for the Next 
Generation Air Transportation System (NGATS)
– DoT, DHS, DoD, DoC, NASA, FAA
– Now also more than 66 industry & private sector members

http://www.jpdo.aero
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Introduction (2): NASA ACAST
• Motivation for work: in line with JPDO…civilian

aviation has both near & long-term needs for new 
communications capabilities
– VHF spectral “congestion” (118-137 MHz used for 

analog voice, very low-rate data (2.4 kbps))
– New services desired, for mobile and “fixed” links, 

all “phases of flight”
• En route
• Takeoff/Landing
• Taxiing and Parking
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Introduction (3)
• Motivation (cont’d): frequency band selection

– Easiest to quickly deploy system in “clean” spectrum
– Deployment of new systems can “protect” reserved 

aeronautical spectrum (“use it or lose it”)
• International Civil Aviation Organization (ICAO) has 

delegation for International Telecommunications Union 
(ITU) World Radio Conference (WRC), next in 2007

– Microwave landing system (MLS) extension band, 
5.091-5.15 GHz, not widely used in many regions 
meets both the above criteria

OU Airport
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Introduction (4)

Sounder Rx in 
FAA van, MIA

• Why is channel characterization important?
– If you don’t know your channel,

system performance will be suboptimal,                    
possibly very poor, with

• irreducible channel error rate that can                         
preclude reliable message transfer (ISI)

• spatial coverage “holes” where                                     
communication not possible (shadowing, fading)

• severely limited data carrying capacity (ISI, fading)
…all of which could require costly system                            
additions to circumvent

– Dearth of work for MLS band channel
• Zero wideband experimental work for this band                   

around airport surfaces
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Measurement Coordination
• Measured at three major airports 

– Cleveland Hopkins International Airport (CLE)
– Miami International Airport (MIA)
– John F. Kennedy International Airport (JFK)

and three small, general aviation (GA) airports
– Ohio University Airport (OU)
– Burke Lakefront Airport (BL)
– Tamiami Airport (TA)

MIA ATCT
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Measurement Coordination (2)
• Access to airport movement area has become more 

complicated in the post September 11 era 
– Strict security procedures must be followed to gain access to 

the airport surface area—requires careful coordination with 
airport management

• Principle objective when planning a measurement 
activity is to minimize impact to airport operations

JFK ATCT
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Measurement Coordination (3)
• Before any measurements, FAA Spectrum Office 

conducted an RFI study (clean)
• NASA obtained a Special Temporary Authorization to 

transmit at the test frequency from NTIA

Tx
I. Sen
(OU)

Selected “cat walk” at 
ATCT sub-junction 
level for Tx
• Good field of view
• Access to AC power

MIA Tx Setup

Omni Antenna

Horn Antenna
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Measurement Coordination (4)
• Prepared a measurement plan with desired

– data recording locations
– procedural approach
– number of personnel involved

• Plan evaluated w/FAA for 
– accessibility
– time of day
– aircraft traffic activity
– airport ingress/egress 

requirements
– driving rules

• Final measurement plan                                              
evaluated & approved                                                       
by  FAA

Downtown Miami

View from MIA ATCT
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Measurement Coordination (5)
• MIAMI aerial view, with numbered measurement locations

• Covered
─Taxiways
─Gates
─Cargo areas
─Access roads 
• Both LOS and 
NLOS sites
• Also 
conducted 
mobile tests 
w/Tx at P2

•to #25, RMS-
DS transitions
•(back to #34, 
field site meas)

P2

P1
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Channel Characterization Overview
• Accurate, thorough channel characterization requires 

combination of 3 inter-related components:
– Analysis: validate against theory, guide measurements
– Measurements: data to build models, affirm theory, help 

classify, and identify unforeseen conditions
– Simulations: create models for consistent evaluation of 

comparative system designs
• All results (analytical and measurement) we obtain are

directly usable by engineers evaluating and/or 
designing communication systems for this application 

Unknown Channel
with IR h(t)

DS-SS
Generator

DS-SS
Correlator
Receiver

c(t) )()( thtc ∗



Ohio University
13

Channel Characterization Method
• Channel “sounding” is transmission and subsequent 

reception of a test signal, from which we can infer 
channel characteristics: the impulse response

• Common test signal is a spread spectrum (direct 
sequence) signal, whose known correlation properties 
can be exploited to estimate channel’s impulse response 

What is the channel?
A wireless channel is the 
complete (set of) transmission 
path(s) taken by an 
electromagnetic signal from 
transmitter to receiver, in the 
band of interest, over the spatial 
region of interest.  
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Channel Impulse Response (CIR)

• h(τ;t)= response of channel at time t, to impulse input 
at time t-τ ; model as random and time-varying

• Path amplitudes {αk} depend upon
– Path loss, shadowing loss
– Reflection, diffraction, absorption losses
– Amplitudes/phases of components within Δτ  (20 ns)

• zk(t) = “persistence” process (∈{0,1}) to account for 
finite “lifetime” of multipath components

• Doppler: ωD,k=2πfD,k ; fD,k<<fc except for very high 
velocity platforms (e.g., LEO satellites)
– 2πfcτk can change rapidly, since fc large

∑
−

=

−−−=
1N

0k
kkckk,Dkk )]t(t[)]}t()t())t(t([jexp{)t()t(z)t;(h τδτωτωατ
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Airport Surface Environment
• Airport movement area is a dynamic environment

– airline ramp activities such as baggage handling, fueling, 
catering taking place throughout the day

– aircraft also taxiing, pushing into, and pulling out of gates
– airport security vehicles, other ground vehicles moving about

NASA GRC

CLE
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Airport Surface Environment (2)
• Airport surface area classification: 3 regions

– LOS-O: Open areas, e.g., runways, some taxiways
–– NLOSNLOS--SS: mostly NLOS w/dominant Specular 

component plus low energy multipath components, 
e.g., near terminals

– NLOS: obstructed LOS, largest DS, e.g., near gates

•• Aircraft & ground vehicles generally inhabit all Aircraft & ground vehicles generally inhabit all 
three regions; over longthree regions; over long--enough durations, enough durations, 
channel is statistically nonchannel is statistically non--stationary stationary 

•• Large buildings present persistent, longLarge buildings present persistent, long--delay delay 
multipath, in contrast to most terrestrial modelsmultipath, in contrast to most terrestrial models
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Measurements: Example Photos
Mobile Measurements, MIA, June 2005

Tx
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Measurements: Example Photos (2)
Point-to-Point Measurements, MIA, June 2005

ATCT

B. Kachmar
(NASA)

W. Xiong
(OU)

D. Matolak
(OU)
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Measurements: Example Photos (3)

ATCT Ledge

Parking Garage

Large Apartment BuildingsHangars

View from ATCT, JFK, August 2005
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Channel Statistic Definitions

• RMS-DS: 2
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• Delay Window Wτ,x = the length of the middle portion 
of the CIR containing x% of the total energy of the CIR 
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• Frequency Domain
• Correlation (~coherence) bandwidth, defined as extent 

in frequency for which channel affects signal equally 
• FCE: time variations of complex amplitudes of different 

“spectral lines” directly crosscorrelated w/time 
variations of reference spectral line
• Crosscorrelation=γH(aref,ai), where ai is amplitude of spectral 

line at freq. index i, and aref is amplitude at the ref. freq., i.e.,

CLE FCE,
LOS-O
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Mobile ATCT Measurements (1)
Measured RMS-DS [min; mean; max] (ns),  Three Settings
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Over 51,000 total PDPs 
collected in 6 airports:
• ~ 35,000 for mobile setting
• ~ 5,000  for point-to-point setting
• ~ 11,800 for airport field site
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Mobile ATCT Measurements (2)
• Power delay profiles—PDPs (received power vs. 

delay), after noise thresholding, for 50 MHz bandwidth

CLE, NLOS-S case
Significant multipath (~ 9 dB) up to 

3Tc (0.06 μsec) + numerous 
weaker components

MIA, NLOS case
Significant multipath (~ 0 dB) 

up to 15Tc (0.3 μsec)
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Mobile ATCT Measurements (3)
• MIA PDP: power vs. delay and vs. time, NLOS
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Mobile ATCT Measurements (4)
• Plots of RMS-DS vs. profile index (time)

MIA: Multiple transitions 
to/from NLOS/LOS/NLOS
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Mobile ATCT Measurements (5)
• Tap probability of occurrence (fraction of time), 50 MHz BW
• Threshold = 25 dB from main tap

• NLOS-S: # taps L=18

• NLOS: # taps L=75

)t(j
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Mobile ATCT Measurements (6)
• Cumulative energy versus tap index for 50 MHz BW

•NLOS-S
– Number of taps =24

– 4 taps for 98

•NLOS
– Number of taps=70

– 40 taps total within 
~25 dB of main tap
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Mobile ATCT Measurements (7)
• Amplitude distribution, MIA, NLOS
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Mobile ATCT Measurements (8)
• Amplitude statistics for NLOS-S, 50 MHz bandwidth

• Weibull probability density
–

– b = shape factor, 
determines fading severity

– a = scale parameter
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Mobile ATCT Measurements (9)
• Time series of Taps 1 and 2,

NLOS-S, 50 MHz BW

0 2 4 6 8 10 12 14
-18

-16

-14

-12

-10

-8

-6

-4

-2

0

Absolute time in  seconds 

A
m

pl
itu

de
 in

 d
B

Fading in time for different Taps 

Fading for First Tap
Fading for Second Tap

• Tap correlations for NLOS-S, 
50 MHz BW
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Mobile Field Site Measurements (1)
• Airport Field Sites useful in network to

– Provide adequate signal strength in areas shadowed and distant 
from ATCT

– Reduce channel dispersion
• Video clip of measurement in MIA
• Points 13-17, Tx at “P2” site
• (to aerial photo)
• Video Clip 0038
• PDP Animation

Tamiami, Kendall, FL
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Mobile Field Site Measurements (2)
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• Distribution of RMS-DS for Field Site and ATCT Tx

• Field Site Tx: 75% profiles in
NLOS-S  and 25% in NLOS
• ATCT Tx: 23% profiles in
NLOS-S and 77% in NLOS
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Channel Model Construction
• 3-state Markov chain to model transitions between 

propagation regions
• 2-state Markov chain for tap persistence processes
• Correlated Weibull amplitude fading

Markov Model
to Select Region

Region_TS
Region_ES

Example: eq. (5.14)

LOS-O Model
• a, b, z(t) for each tap (e.g., Tables 6.19, 6.20)
• Correlation matrix for region (e.g., eq. (6.4))

NLOS-S Model
• a, b, z(t) for each tap (e.g., Tables 6.22, 6.23)
• Correlation matrix for region (e.g., eq. (6.6))

NLOS Model
• a, b, z(t) for each tap (e.g., Tables 6.25, 6.26)
• Correlation matrix for region (e.g., App. D)

Simulated
CIR 

Samples
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Channel Model Construction (2)
• Select channel BW (20 MHz), airport size (Lg)
• Using mean RMS-DS, # NLOS taps is 32

– Reduce to L=25, account for 95% energy
• Select tap correlation matrix (worst-case, avg.,...)
• Obtain tap amplitude statistics →
• Obtain tap persistence process parameters ↓

Tap Amplitude 
Statistics

………
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Channel Model Construction (3)
• Example persistence process and propagation region 

Markov chain outputs
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Channel Model Construction (4)
• Example tap fading amplitudes, Large Airport, NLOS-S
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• Weibull Fading Parameters 
– Tap 1: E(α2)=0.79, b=4.8
– Tap 2: E(α2)=0.1 , b=1.7

• r12 = 0.79
• Developed algorithm to 

generate multivariate, 
correlated Weibulls with 
arbitrary E(α2), b
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Channel Model Evaluation
• Model comparison: SF & HF vs. Measured Data
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Summary (1)
• Provided motivation to characterize the 5 GHz MLS 

extension band channel around airport surface areas
– Need for effort from the point of view of efficient 

communication link design, and band protection

• Recent measurement campaign multiple airports
described, including  
– Coordination w/local authorities required for successful tests
– Description of equipment, measurement process
– Example measured results
– Example modeling results
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• Correlated scattering in all regions of airport
• Amplitude statistics for some taps worse than Rayleigh
• Statistical non-stationarity
• Both high-fidelity and sufficient fidelity channel 

models developed

Summary (2)
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17502.06052.08869.07965.09695.06160.05644.0
7502.016528.04653.09513.04222.07768.08969.0
6052.06528.019181.06605.06958.08239.04581.0
8869.04653.09181.016939.08606.04255.04782.0
7965.09513.06605.06939.015758.06588.03485.0
9695.04222.06958.08606.05758.013134.02940.0
6160.07768.08239.04255.06588.03134.017881.0
5644.08969.04581.04782.03485.02940.07881.01

SNLOS
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Field Site Measurement Summary
• Can reach areas that are “hard-to-reach” from ATCT Tx
• Comparatively, channel is less dispersive than ATCT Tx 

mobile channel
• A very high-fidelity channel model can be implemented 

with lower complexity than for the ATCT mobile
measurement model
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Future Work
1. Refine channel models for VTV applications
• Goal: Develop high-fidelity, non-WSSUS models for Vehicle-to-

Vehicle channels, for Intelligent Transportation Systems (ITS)

2. Wideband air-ground channel characterization in 960-1024 MHz 
aeronautical spectrum, for future air-ground communications

• Goal: Develop wideband statistical channel models applicable to 
the 960-1024 MHz aeronautical (DME) band

3. Evaluation of candidate communication system (IEEE 802.16, 
cellular) performance on airport surface in MLS extension band 

• Goal: Determine expected performance of best technology 
candidate(s) for airport surface communications deployment
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Questions??


