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Research OverviewResearch Overview

• To improve MEMS-technology gyro beyond that achieved 
by the premier navigation research institutions requires an 
aggressive, high-risk research program

• At UA we have attacked the technical challenge by 
concentrating on three premises:
− Increase mass of the gyro (dimensions in centimeter 

scale-JPL calls this a meso-scale gyro)
− Increase signal amplitude by using piezoelectric 

actuators and sensors (instead of conventional 
electrostatics)

− Use alternatives to Silicon (for example, Quartz) that 
should reduce accuracy degradation caused by 
temperature changes

• We call the current design the UA X-Post gyro
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The UA X-Post Gyro: First completed modelThe UA X-Post Gyro: First completed model
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Overview of Device FabricationOverview of Device Fabrication

• Fabricate the active wafer 
− Build a complete stack, then etch

• Fabricate two handle wafers.
• Fabricate the post.
• Bond the handle wafers to the active wafer
• Bond the post to the three wafer bonded stack
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Technological ComplicationsTechnological Complications

• The x-post device is two-sided.
• The x-post device is large.
• The wet etching of PNZT is far from ideal.
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Difficulties with the PNZT Wet EtchDifficulties with the PNZT Wet Etch

Etch test sample prior 
to wet etching of PNZT

SEM image taken after 
wet etching of PNZT



Aerospace Engineering & Mechanics 

Difficulties With the PNZT Wet EtchDifficulties With the PNZT Wet Etch

Attempts to circumvent shorting 
problems by using an overlap of 
photoresist were thwarted by 
the presence of foreign particles 
in the PNZT film.
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Two Step PNZT EtchTwo Step PNZT Etch

• First, remove about 90% 
of the PNZT via ion 
milling.

• Then finish removing the 
PNZT with a wet etchant
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Active Wafer and Handle WafersActive Wafer and Handle Wafers

Completed Active Wafer Completed Handle Wafer
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Bonded Three Wafer StackBonded Three Wafer Stack
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Materials Integration and EvaluationMaterials Integration and Evaluation
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Develop a sol-gel and PLD growth process for 
PNZT integrated structures on Pt/Si and Pt/quartz 
substrates with the highest piezoelectric response. 

Quantify ferroelectric, piezoelectric and 
mechanical properties of PNZT films. 

Develop and evaluate an experimental setup for  
piezoelectric measurements.

ObjectivesObjectives
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Advantages:
• Low cost
• Easy control of composition
• Uniformity over large area
• Coatings in very complex shapes
• Low processing temperatures
• Spinning, dipping, spraying

Steps:
• Film deposition » spinning 3000rpm/30s;
• Heat treatment of the film at low temperature 

(400 ° C/10 min) for organic pyrolysis;
• High temperature annealing (700 °C or  650 

°C) of  the film for crystallization and 
densification.

Sol-Gel techniqueSol-Gel technique
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Piezoelectric strain coefficient, dij ,

dij = (strain/field) = Є/E (mV-1)

Piezoelectric charge coefficient, eij

eij = (charge density/strain) = Q/Є (Cm -2)  

Young’s Modulus, Ω

Ω = (stress/strain) = σ/Є (Nm-2) 

(3)

(2)

(1)

Subscript i gives the direction 
of the excitation agency, and j 
describes the direction of the 
system response.d31 denotes the electric field in the 

polarization axis (3)  and strain along axis  
(1) which is orthogonal to (3).

Basic DefinitionsBasic Definitions
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Fotonic
Sensor

Oscilloscope

~

Au-top electrode
PNZT
Pt-bottom electrode
Si

Support•Static equilibrium
•Piezoelectric layer+elastic layer
•Strain compatibility between successive layers
•Radius of curvature much larger than beam thickness
•Avoid dielectric breakdown by using smaller electrodes
•Amplified displacement using long cantilevers
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High piezoelectric coefficients in the as-grown PNZT 
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Fotonic
Sensor

Oscilloscope

Au-top electrode
PNZT
Pt-bottom electrode
Si

Support
~

Charge
Amplifier

Amplifier

Oscilloscope

Piezoelectric sheet
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Beam splitter Mirror

Laser

Photo diode

Mean Standard deviation

Young’s modulus substrate
Si/SiO2/TiO2/Pt

(Gpa)

148.09 GPa 7.11 GPa

Young’s modulus PNZT
              (Gpa)

98.79 GPa 14.81 GPa

~

Sources of error: boundary 
conditions, geometry and 
damping (caused by agents 
other than air. 
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Successfully developed a sol-gel processing for PNZT thin film 
growth

High piezoelectric coefficients in the as-grown films
Largest area covered: 4 inch wafer
Largest thickness: 1.2 µm.

Designed and tested a method for reliable measurements of the 
effective piezoelectric coefficients d31 and e31.

Electrical and mechanical characterization of sol-gel PNZT thin 
films

Established a method for reducing piezoelectric aging. 

Successfully integrated approximately 300 nm thick PNZT films on
4 inch Si/SiO2 and Si/Pt wafers. 

Conclusions-Materials DevelopmentConclusionsConclusions--Materials DevelopmentMaterials Development
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Electronics: Digital Controller
Design for the X-Post Gyroscope 
Electronics: Digital Controller

Design for the X-Post Gyroscope 
The figure below shows a top view of the first version of the digital 

controller daughter board.  
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The custom daughter boardThe custom daughter board

• The custom daughter board provides the 
peripheral support needed to monitor and drive 
four channels of the MEMs-based sensor.  

• The heart of the custom daughter board is Altera’s
EPM7256 CPLD which supports a programmable 
interface between the four control channels and 
the DSP processor.  

• The EPM7256 additionally supports service 
functions to lesson the DSP processor burden.
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Texas Instruments high performance 
MS320C6711 DSK development board
Texas Instruments high performance 
MS320C6711 DSK development board

• The custom-designed daughter board is paired 
with the Texas Instruments high performance 
MS320C6711 DSK development board shown 
below.

• The TI board supports one of the industries 
highest performance DSP processors, the floating 
point TMS320C6711 processor.  Clocked at 100 
MHz, the processor provides 32-bit floating point 
capability at 600 MFLOPS. 

• Selection of this processor was based on the need 
to implement state-of-the-art digital filtering 
concepts for low-noise control of the MEMs-based 
sensor.
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Photo: TI MS320C6711 DSK development boardPhoto: TI MS320C6711 DSK development board
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Custom daughter board and 6711 DSK stacked Custom daughter board and 6711 DSK stacked 
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SimulationSimulation

• We have developed an in-house FEM code 
(BAMAFEM) capable of performing modal analysis 
and dynamic response analysis of 3D solids such 
as the X-Post gyro

• A special thin film piezoelectric element was 
developed in order to simulate the piezoelectric 
actuators and sensors (can input a voltage at 
actuators and compute the voltages produced at 
the sensor pads)

• Can input an arbitrary angular rate input about an 
arbitrary axis

• The code provides a tool for shortening the design 
iteration process
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Experimental Verification 
of BAMAFEM Thin Film Finite Element

Experimental Verification 
of BAMAFEM Thin Film Finite Element
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Displacement at End of Cantilever
Experimental:  1.12014 ×10-7m  FEM: 1.0363×10-7 m

Displacement at End of Cantilever
Experimental:  1.12014 ×10-7m  FEM: 1.0363×10-7 m

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-12

-10

-8

-6

-4

-2

0

2

4
x 10-8

Time Step Number, ∆t = T1/10

D
yn

am
ic

 R
es

po
ns

e 
(m

)
Dynamic Response at Node 255, V=3.5+7*sin(2*π*3*∆t)



Aerospace Engineering & Mechanics 

X-Post Gyro with Manufacturing DefectX-Post Gyro with Manufacturing Defect

Manufacturing imperfection 
in corner of post
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Effect of Temperature and 
Imperfection on Quadrature Error

Effect of Temperature and 
Imperfection on Quadrature Error
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SummarySummary

• Currently, the first model of the X-Post gyro  
design is in the initial testing stage. The team 
expects to report initial results and lessons learned 
in a later paper.
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