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ODbjectives of Research

« Show various applications of Adaptive Filters within the
ATN and AMSS specifically.

« Enhance the theory of Adaptive Filtering by using the
Wavelet Transform/LM S scheme instead of only LMS.

o Compare the Wavelet Transform LM S method to other
Transform LM S methods such as DCT, DST, ....etc.

e Produce Theoretical and Simulation Results that supports
the above objectives and go into the various details and
features of the algorithms. Example of such details include
time constants or adaptation response, misadjusment,
various errors such as dynamic or overall error, stability
range, configuration of various implementation
methods.. . etc.

NOTE: Most Results are either shown or referenced in f)aper
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What are some of those applications.

A-Adaptive plant modeling (or channel modeling)

B-Adaptive channel noise canceling in frequency domain
(on communication channel) such as narrow band noise
In wide band signals and vice versa

C-Adaptive Equalization

E-Adaptive beam forming (space domain)

F-Adaptive voice coding

G-Adaptive rake receiversin CDMA

H-Adaptive cockpit noise canceling (time domain+freq)

|-Adaptive Inverse Control

J-Enhanced GPS receivers ... and many more...
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 LMSusedinthe above to identify a model using an Adaptive Linear
Combiner used in many applications in Communications.

e The LMS minimizesthe mean square of the error between the desired
response and the output of the Adaptive Combiner.




The LMS and Steepest Descent Algorithm

(continued)
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The LMS s the same as the Stegpest Decent method except for the use
of an estimate of the gradient as oppose to true gradient N,.

The LMS converges to the Optimal Wiener solution with some
misadjustment and with conditions on the range of the adaptation
constant L.



LMS Algorithm (continued)

Misudjustment=p trR
convergence parameter stability range:  O<p<1/trR

R=E(X\X")
trR=sum of eigenvaluesof R (I ;,1 ,,1 5,1 ,4,...... )
X[ Xaier Xare s Xaier X X s Xogere o« -+ X T

Learning Curve Time Constant=t . ,.=1/(4u1 )

Therefore many of the parameters that the LM S is quantified by such
as the speed of adaptation, misadjustment, are dependent on the trace
of the autocorrelation of the input signal. It is known that the best
results are achieved when the eigenvalue spread of the autocorrelation
matrix istheleast. Thisisachieved by transforming the signa as
shown next....
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ransform LM S Algorithm (continued)

 Transform of input vector
S = TX,
» Adaptation Weights in transform domain
_ ty-1
Wsopt — (T ) Wopt _
e Error same iﬂboth transform and not transform domains
€ _ emi n

smin
o Autocorrelation in transform domain
— T
R.=TRT
e Transform LMS agorithm
= ~+
W%1 Wq( Zn;SKeSK
 Adaptation constant bounded by
>m > 0

tr(R,)



ransform LM S Algorithm (continued)

« Self orthogonalizing transform domain LM S algorithm

Wskﬂ :Wsk +2mR, 1S<es<
 Adaptation factor bounded by:
1 1
N tr(R.R:})
* Recursive algorithm to compute Inverse autocorrelation

R'(k,kK) ' =b.R"(k,k)* +(1- b).Z (k)

>rnS>O
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ransform LM S Algorithm (continued)

The advantage of taking the transform of the input signal is to reshape
the eigenvalues of the autocorrelation function R. The best solution is
to make the maximum over the minimum eigenvalue equal to identity.
That is make the spread equal to identity.

Only few cases where that is possible such as for example if the input
Is Markov order one then the Discrete Cosine Transform will produce
such an optimal result.

The other case isto use Karhunen Loeve Transform (KL T) but that is
dependent on the signal spectrum apriori which makesit an impractical
solution.

The DWT athough not necessarily optimal or always better than some
of the other methods (such as DCT,DST,DHT, and many more), it is
closeto optimal in many cases sinceisdoesagood job in
orthogonalizing the input signal by using Wavelet Transform theory.
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he DWT
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e Theory already developed for the DWT and its
Implementation. Uses Subband Coding structure to
Implement the DWT as shown above. The differenceisin
the filters that must satisfy a number of axioms.

(Regularity Condition)
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DWT (continued)

 The DWT has many advantages among them isthe time
and frequency localization feature.

e Variousfilters exist such as Daubechies, Haar, and others
Each highlights different characteristics of the input signal.
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DWT Block Implementation

- Size 8x8 with size 4 wavelet coefficient, hO low pass, hl high pass

@
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3 h(4) O 0 0 0  h(® h(dy
h® h@ h@ h@ O 0 0 Og
0 0O h@ h®@ hOE h# O 0 ¢
0 0 0 h@ h@ hE hl(4)3
gh(3 h@4 O 0 0 0 h@ h(2g

C%(D) D> D> (D>

D DD DD
o

- Similar structuring applies for any other sizes
- shift by two in each row due to the subsampling by two

- Wrapping produces an orthogona matrix )



DWT Block Implementation (continued)

- subsequent transformations up to highest level look like:
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« N is size of matrix, m depends length of input signal and wavelet filter length
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DWT Block Implementation (continued)

. Last level of Uniform transformation is similarly given by:

e u

L _EL(NI2™) (N/27) 0 ;
m~ A& R u
g 0 T,(N/2™)" (N/2™§

- the transformed input vector is produced by product of each of

the matrices for each level. Hence transformation matrix of the
TLMS algorithm becomes:

T=TOT,T,T,
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Other Transforms Used

Discrete Cosine
Transform (DCT)

Discrete Hartley
Transform (DHT)

T (i,1)=C.(.1) = \/:K,cosx;—y)pg
Ki=7z 1=0 ?
K=1 itro "ILI=0..n-1

ae?poo
En oy

"1, =0....n- 1

T G,1)=H.(i,1)= J_gwr—4ﬂn
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Adaptive Filtering Analyses and Simulation

- Results shown in atheoretical form by computing elgenvalue
ratio of maximum to minimum eigenvalues of transform domain
input signal for each different transform.

- Results are verified viatime domain modeling / identification
simulations that employ the TLM S algorithm.

- Various wavelets were tried such as the Daubechies size 4 and
8, Symmlets, and Haar, and other transforms (DFT, DCT,DHT)
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Adaptive Filtering (continued)

- Many different coloring filters used to test various inputs
since that changes the correlation of the transform signal and
hence the eigenvalue ratio and the convergence speed

o different length FIR LM S filters were used (size 8 and 16)
which changes the size of the block transform matrices

- Simulations are run many times (200 or more) and results are
averaged.
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Filt & Fregquency hMagnitude Response

Example of a Coloring Flter Case

Magnitude do

R 0.05 0.7 0,15 0.2 025 0.3 055 0.4 0,45 0.5
FMormalized Freguency
LEVEL Uniform/Dyadic (H/L) | DAUBECHIES (8) | DAUBECHIES (4) HAAR
One | ====-emmeemoemeeeceeoeee- 629 634 634
DyadicLow [ -------ooooomooo- 595 416
DyadicHigh [ --------mmmemme - 628 619
Two Uniform | —--mmmemmme - 282 151
DyadicLow | —---—mmmmemmmm e e 415
DyadicHigh | ---mmmmmmmmmmme | oo 620
Three Uniform | oo | 21

Table: Eigen valueratios
(EVR=643, DCT=249,DFT=21,DHT=23,PO2=63,WHT=21)
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First Coloring Filter Case (continued)

Filt 1E,H=EI,|:“I]hlacl-::Identitj,r,[Ejred=DET,[3]hlue=DElL1 Myellow=0412 Eigreen=H2L13
-1|:| E 1 1 1 1 1 1 1 1 E

Souare Error
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Plant Modeling Block

Disturbance Nk

Input to +
Plant Uk PLANT vk + Plant Output
P —p » 7k
P(2) . l
+
+
/ Error Ek -
Plant Model
" B2

- Identified plant matches plant regardless of noise input

P*(2) = P(2)

- Identified plant weights (FIR) match those of an IR plant in order
and magnitude given white noise input to plant up to FIR length.
“Interestingly similar result isfound in DWT/LMS modeling using

a different and independent approach”




Inverse Plant Modeling Block (Widrow)
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the mean sguare
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perfect inverse:

- P(z') _ 1

= = =C(2)
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- Inverse modeling
with areference
model and noise
on plant. Uses
plant modédl (vs.
actual model) to
avoid disturbance
effects
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Transform Adaptive Inverse Con‘tiol ler/Disturbance Canceling
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Simulation Results (A minimum phase plant)

-plant z/(z-0.5), discrete minimum phase.

-adaptation constant=0.0006

-Transform type DWT Haar uniform level 3

-FIR filter length and transform matrix size 8x8

-Reference model unity

-normalization constant 1e-3

-dither noise white, mean of zero, 0.18 std

-weights plotted in the non-transform domain (See TLMS
section...). Givesadirect way of checking results (i.e.
Inverse weights match up with plant denominator -0.5, 1)

-Input command white with 0.08 std. added on a4 amplitude,
500 steps period pulse train

-Output follows input as expected, weights adapt accordingly
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Simulation Results (continued)

Input Cammand

"R R

o

] 500 1000 1500 2000 2500 3000
tirme (sec)

Systerm Qutput ¥k

SLRRL
LLLL

1000 1600 2000 2500 3000
time {sec)




27



Simulation Results (continued)
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Simulation Results (Disturbance Canceling-time)

-plant (z)/(z-0.5), discrete, minimum phase.

-adaptation constant 0.0005

-Transform type Haar uniform level 3

-FIR filter length and transform matrix size 8x8

-normalization constant 1e-3

-Reference Model unity

-Disturbance input white, 1 std. Added to amplitude 5 step that
starts at 2000 seconds.

-dither noise white, mean of zero, 1 std

-weights plotted in the non-transform domain (See TLMS
section...). Givesadirect way of checking results (i.e.
Inverse weights match up with plant denominator -0.5, 1)

-Input command white with 1 std. added on a5 amplitude,
step starting at 2500 secs

-Output follows input as expected, weights adapt accordingly,

disturbance Is canceled. 2



Simulation Results (continued)
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Simulation Results (continued)

= System Error Ek (Hu3)
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Simulation Results (continued)
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Simulation Results (continued)




Adaptive Equalization

Received Signal after Adaptive /Y'(n) Slicer or -I: (n) Mode Switch STerCZjSéﬂ?;e
passing through the Y Equalizer > Decision —» T (n)
received filter based on Device
TLMS
Adaptive Equalizer
Transform Type Eigenvalue Ratio
Haar 2455
DCT 29
DFT 192.3
DHT 188.3
Daubachies 4 159.1
Daubachies 8 92.3
Symmlet 85.6
No Transform 23205

Eigenvalue Ratios of the Transfor ms used with Pre/Post
C.p(z)= 0.05 - 0.063 z71 + 0.088 z°2 -0.126 z 3 -
0.25 z°4 * 0.9047 z° + 0.25 z°% + 0.126 z°7 +
0.038 + 0.088 z°8

Filter sChannel mode given by Eq:
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Noise/ Interference canceling (frequency)
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Figure 7 A strong narrowband interference N(j ) in awideband signal S(} )
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Figure 8 Adaptive Filter for suppressing narrowband interferencein a wideband signal
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Adaptive PCM

Speech Signal —V—
A _

Adaptive Beam Forming and interference canceling (space)
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Meet some Families of Speech Coders

Objective: to significantly reduce the number of bits which must be transmitted,
but without creating objectionable levels of distortion

Concerned with voice signal already band-limited to 4 kHz. max. and sampled at
8 kHz.

The objective istoll-quality voice reproduction
A few different strategies and algorithms used in voice compression:

PCM (pulse-code modulation), APCM (adaptive PCM)
DPCM (differential PCM), ADPCM (adaptive DPCM)
DM (delta modulation), ADM (adaptive DM)

CVSD (continuously variable-slope DM)

APC (adaptive predictive coding)

RELP (residual-excited linear prediction)

SBC (subband coding)

ATC (adaptive transform coding)

Waveform Coders

MPLP (multipulse-excited linear prediction)
RPE (regular pulse-excited linear prediction)
VSELP (vector-sum excited linear prediction)
CELP (code-excited linear prediction)

Hybrid Coders

Channel, Formant, Phase, Cepstral, or Homomorphic
LPC (linear predictive coding)

STC (sinusoidal transform coding)

MBE (multiband excitation), IMBE (improved MBE)

Vocoders




Speech Coders Used Mobile Technologies:

» Vocoders are usually described by their output rate (8 kilobits/sec, etc.)
and the type of algorithm they use. Here'salist of the vocoders used in

currently popular wirel ess technologies:

bits/sec | Algorithm | Standard (Year) MOS
64k log PCM | CCITT G.711 (1972) 4.3
32k ADPCM | CCITT G.721 (1984) 4.1
32k LD-CELP | CCITT G.728 (1992) 4.0
16k APC Inmarsat-B (1985) n/avalil
13/714/2 v QCELP CTIA, 1S-54/J-Std008 (1995) n/avail
13k RPE-LTP | Pan-European DMR, GSM (1991) 3.5
9.6k MPLP BTI Skyphone (1990) 3.4
8k EFRC 1S-136 (1997) TDMA enhanced n/avalil
8k VSELP CTIA 1S-54 (1993) TDMA 3.5
6.7k VSELP Japanese DMR (1993) 3.4
6.4k IMBE Inmarsat-M (1993) 3.4
8/4/2/1 v QCELP Enhanced Vocoder, 1997 CDMA n/avail
8/4/2/1 v QCELP CTIA, 1S-95 (1993) CDMA 3.4
4.8k CELP US, FS-1016 (1991) 3.2
2.4k LPC-10 US, FS-1015 (1977) 2.3




CONCLUSIONS AND LESSONS LEARNED

- Many applications of Adaptive Filters are applicable
and necessary within the ATN and AMSS

-The dynamic nature of the system, mobility, makes
adaptive systems more critical

-generic and general results are shown for aLMS and
TLMS adaptive filters, with TLM S showing
Improvement
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