
1

Adaptive Filtering and its Applications in 
Satellite Communications

Mohammed Shamma

Analex Corporation

May 2, 2002



2

Objectives of Research

• Show various applications of Adaptive Filters within the 
ATN and AMSS specifically. 

• Enhance the theory of Adaptive Filtering by using the 
Wavelet Transform/LMS scheme instead of only LMS.

• Compare the Wavelet Transform LMS method to other 
Transform LMS methods such as DCT, DST, ….etc.

• Produce Theoretical and Simulation Results that supports 
the above objectives and go into the various details and 
features of the algorithms.  Example of such details include 
time constants or adaptation response, misadjusment, 
various errors such as dynamic or overall error, stability 
range, configuration of various implementation 
methods…etc.

NOTE: Most Results are either shown or referenced in paper
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Ground-based:
Terminal area broadband:•
Local Wx, FIS, TIS•
pproach/departure •
DS-B Surface medium-band•
DS-B round traffic management •
round ops clearances, etc. 

National/Global 
Interoperability and 

Networking

National/Global Interoperability 
and Networking

Satellite-based:
Broadband broadcast•
National/Regional Weather and 
Flight Information•
n- Route Traffic Information and 
other services Medium-band return•
DS; Weather sensor data•
ther operations, maintenance,        
health monitoring•
ecurity, black box,   surveillance 
audio/video,               etc.



4

What are some of those applications:

A-Adaptive plant modeling (or channel modeling)
B-Adaptive channel noise canceling in frequency domain 

(on communication  channel) such as narrow band noise 
in wide band signals and vice versa

C-Adaptive Equalization
E-Adaptive beam forming (space domain)
F-Adaptive voice coding
G-Adaptive rake receivers in CDMA
H-Adaptive cockpit noise canceling (time domain+freq)
I-Adaptive Inverse Control
J-Enhanced GPS receivers … and many more…
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The LMS and Steepest Descent Algorithm

• LMS used in the above to identify a model using an Adaptive Linear 
Combiner used in many applications in Communications.

• The LMS minimizes the mean square of the error between the desired 
response and the output of the Adaptive Combiner.
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The LMS and Steepest Descent Algorithm 
(continued)

• The LMS is the same as the Steepest Decent method except for the use 
of an estimate of the gradient as oppose to true gradient ∇k.

• The LMS converges to the Optimal Wiener solution with some 
misadjustment and with conditions on the range of the adaptation
constant µ.
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LMS Algorithm (continued)

• Misudjustment=µ trR

• convergence parameter stability range:     0<µ<1/trR

• R=E(XkXk
T)

• trR=sum of eigen values of R     (λ1,λ2 ,λ3 , λ4 ,……, λn)

• Xk=[x1k, x2k , x3k , x4k , x5k , x6k,…….. , xnk]T

• Learning Curve Time Constant=τmse=1/(4µ λp )

• Therefore many of the parameters that the LMS is quantified by such 
as the speed of adaptation, misadjustment,  are dependent on the trace 
of the autocorrelation of the input signal.  It is known that the best 
results are achieved when the eigenvalue spread of the autocorrelation 
matrix is the least.  This is achieved by transforming the signal as 
shown next….
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The Transform LMS Algorithm
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Transform LMS Algorithm (continued)
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• Transform of input vector 

• Adaptation Weights in transform domain 

• Error same in both transform and not transform domains 

• Autocorrelation in transform domain 

• Transform LMS algorithm 

• Adaptation constant bounded by 
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Transform LMS Algorithm (continued)
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• Self orthogonalizing transform domain LMS algorithm 

• Adaptation factor bounded by: 

• Recursive algorithm to compute Inverse autocorrelation 
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Transform LMS Algorithm (continued)
• The advantage of taking the transform of the input signal is to reshape 

the eigenvalues of the autocorrelation function R.  The best solution is 
to make the maximum over the minimum eigenvalue equal to identity. 
That is make the spread equal to identity.  

• Only few cases where that is possible such as for example if the input 
is Markov order one then the Discrete Cosine Transform will produce 
such an optimal result.

• The other case is to use Karhunen Loeve Transform (KLT) but that is 
dependent on the signal spectrum apriori which makes it an impractical 
solution.

• The DWT although not necessarily optimal or always better than some 
of the other methods (such as DCT,DST,DHT, and many more), it is
close to optimal in many cases since is does a good job in 
orthogonalizing the input signal by using Wavelet Transform theory.
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The DWT

• Theory already developed for the DWT and its 
implementation.  Uses Subband Coding structure to 
implement the DWT as shown above.  The difference is in 
the filters that must satisfy a number of axioms. 
(Regularity Condition)
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DWT (continued)
• The DWT has many advantages among them is the time 

and frequency localization feature. 

• Various filters exist such as Daubechies, Haar, and others 
Each highlights different characteristics of the input signal.
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DWT Block Implementation
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• size 8x8 with size 4 wavelet coefficient, h0 low pass, h1 high pass

• shift by two in each row due to the subsampling by two 
• Similar structuring applies for any other sizes

• wrapping produces an orthogonal matrix
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• subsequent transformations up to highest level look like:
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• N is size of matrix, m depends length of input signal and wavelet filter length
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• last level transformation:

DWT Block Implementation (continued)
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DWT Block Implementation (continued)

• Last level of Uniform transformation is similarly given by:

• the transformed input vector is produced by product of each of 
the matrices for each level. Hence transformation matrix of the 
TLMS algorithm becomes: 

123 TTTTT l K=
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Discrete Wavelet 
Transform (DWT)

(already showed)

Discrete Hartley 
Transform (DHT)

Discrete Fourier 
Transform (DFT)

Discrete Cosine 
Transform (DCT)
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Other Transforms Used
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Adaptive Filtering Analyses and Simulation

• Results shown in a theoretical form by computing  eigenvalue 
ratio of maximum to minimum eigenvalues of transform domain 
input signal for each different transform.

• Results are verified via time domain modeling / identification 
simulations that employ the TLMS algorithm. 

• Various wavelets were tried such as the Daubechies size 4 and 
8, Symmlets, and Haar, and other transforms (DFT, DCT,DHT)
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• Many different coloring filters used to test various inputs 
since that changes the correlation of the transform signal and 
hence the eigenvalue ratio and the convergence speed 

Adaptive Filtering (continued)

• different length FIR LMS filters were used (size 8 and 16) 
which changes the size of the block transform matrices

• Simulations are run many times (200 or more) and results are 
averaged. 
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LEVEL Uniform/Dyadic (H/L) DAUBECHIES (8) DAUBECHIES (4) HAAR

             One --------------------------- 629 634 634
      Dyadic Low ----------------------- 595 416
      Dyadic High ----------------------- 628 619

Two
       Uniform ----------------------- 282 151
       Dyadic Low ----------------------- ----------------------- 415
       Dyadic High ----------------------- ----------------------- 620

Three
       Uniform ----------------------- ----------------------- 21

Table: Eigen value ratios
(EVR=643, DCT=249,DFT=21,DHT=23,PO2=63,WHT=21)

Example of a Coloring Filter Case
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3

1,4

2

5

First Coloring Filter Case (continued)
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Plant Modeling Block
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- Identified plant matches plant regardless of noise input

- Identified plant weights (FIR) match those of an IIR plant in order    
and magnitude given white noise input to plant up to FIR length.
“Interestingly similar result is found in DWT/LMS modeling using 
a different and independent approach”
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Inverse Plant Modeling Block (Widrow)

Plant
P(z)

  +

 -

+

 Plant
 Output

 Plant Input
Modeling Signal       Inverse

Plant Model

)(ˆ zC

error

- Minimization of 
the mean square 
error produces a 
perfect inverse:

)(
)(

1

)()(

)(
)(ˆ

1

1

zC
zPzPzP

zP
zC === −

−

  +

 Plant Adaptive

 Model )(ˆ zP

Plant
Disturbance

Nk

Error
Ek

Plant
Input
Uk

 +

 -

  +

 -

+

+

PLANT
P(z)

Zk

dk

Reference
Model
M(z)

Model Reference

Inverse )(ˆ zC

  +

  +

- Inverse modeling 
with a reference 
model and noise 
on plant.  Uses 
plant model (vs. 
actual model) to 
avoid disturbance 
effects
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Transform Adaptive Inverse Controller/Disturbance Canceling
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Simulation Results (A minimum phase plant)

-plant z/(z-0.5), discrete minimum phase.
-adaptation constant=0.0006
-Transform type DWT Haar uniform level 3
-FIR filter length and transform matrix size 8x8
-Reference model unity
-normalization constant 1e-3
-dither noise white, mean of zero, 0.18 std
-weights plotted in the non-transform domain (See TLMS 
section…).  Gives a direct way of checking results (i.e. 
inverse weights match up with plant denominator -0.5, 1)

-Input command white with 0.08 std. added on a 4 amplitude, 
500 steps period pulse train

-Output follows input as expected, weights adapt accordingly
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Simulation Results (continued)
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Simulation Results (continued)
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Simulation Results (continued)
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Simulation Results (Disturbance Canceling-time)          
-plant (z)/(z-0.5), discrete, minimum phase.
-adaptation constant 0.0005
-Transform type Haar uniform level 3
-FIR filter length and transform matrix size 8x8
-normalization constant 1e-3
-Reference Model unity
-Disturbance input white, 1 std. Added to amplitude 5 step that 
starts at 2000 seconds.
-dither noise white, mean of zero, 1 std
-weights plotted in the non-transform domain (See TLMS 
section…).  Gives a direct way of checking results (i.e. 
inverse weights match up with plant denominator -0.5, 1)

-Input command white with 1 std. added on a 5 amplitude, 
step starting at  2500 secs 

-Output follows input as expected, weights adapt accordingly, 
disturbance is canceled. 
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Simulation Results (continued)

Time (sec)

Time (sec)

System Output Yk (Hu3)
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Simulation Results (continued)

Time (sec)

System Error Ek (Hu3)

Time (sec)

Disturbance Input  
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Simulation Results (continued)

Time (sec)

Transformed Plant Weights Wk*Hu3

Time (sec)

Transformed Inverse Plant Weights Wkinv*Hu3
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Simulation Results (continued)

Time (sec)

Transformed Controller Weights CWk*Hu3
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Adaptive  Equalizer

 

Y(n) 

                 - 
  e(n)         + 

)(ˆ nT     Mode Switch    Adaptive 
Equalizer 
based on 
TLMS 

  ∑  

Slicer or 
Decision 
Device  

Training 
Secquence  

)(nT  

Received Signal after 
passing through the 

received filter 

Transform Type Eigenvalue Ratio

Haar 245.5

DCT 2.9

DFT 192.3

DHT 188.3

Daubachies 4 159.1

Daubachies 8 92.3

Symmlet 85.6

No Transform 2320.5

Eigenvalue Ratios of the Transforms used with Pre/Post     Filters/Channel model given by Eq:
Cch(z)= 0.05 - 0.063 z-1 + 0.088 z-2 -0.126 z-3 -
0.25 z-4 + 0.9047 z-5 + 0.25 z-6 + 0.126 z-7 + 
0.038 + 0.088 z-8

Adaptive Equalization
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Figure 7 A strong narrowband interference N(ƒƒ ) in a wideband signal S(ƒƒ ) 
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Narrowband
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FIR Linear
  Predictor
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  ∑

Adaptive
Algorithm

Using TLMS

Estimated
Wideband

Signal
S^(n)

Wideband Signal plus
narrowband noise
R(n)=S(n)+N(n)

Decorrelation
Delay

Figure 8 Adaptive Filter for  suppressing narrowband interference in a wideband signal

Noise / Interference canceling (frequency)
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 |R(ƒ)| Combined Wideband 
Signal plus Narrowband 
Interference.  

 |S_est(ƒ)| Estimated 
Wideband Signal   

 |S(ƒ)| Wideband Signal   
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Array
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Algorithm

∑  x

  x

Error
(referenced
to steering
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Speech Signal       Quantizer

Adaptive
Algorithm

  ∑

      Predictor

ADPCM
transmit
signal

Adaptive
Algorithm

Adaptive PCM

Adaptive Beam Forming and interference canceling (space)
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Meet some Families of Speech Coders

Waveform Coders

PCM (pulse-code modulation), APCM (adaptive PCM)
DPCM (differential PCM), ADPCM (adaptive DPCM)
DM (delta modulation), ADM (adaptive DM)
CVSD (continuously variable-slope DM)
APC (adaptive predictive coding)
RELP (residual-excited linear prediction)
SBC (subband coding)
ATC (adaptive transform coding)

Hybrid Coders

MPLP (multipulse-excited linear prediction)
RPE (regular pulse-excited linear prediction)
VSELP (vector-sum excited linear prediction)
CELP (code-excited linear prediction)

Vocoders

Channel, Formant, Phase, Cepstral, or Homomorphic
LPC (linear predictive coding)
STC (sinusoidal transform coding)
MBE (multiband excitation), IMBE (improved MBE)

• Objective:  to significantly reduce the number of bits which must be transmitted, 
but without creating objectionable levels of distortion

• Concerned with voice signal already band-limited to 4 kHz. max. and sampled at 
8 kHz.

• The objective is toll-quality voice reproduction
• A few different strategies and algorithms used in voice compression:
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Speech Coders Used Mobile Technologies:
• Vocoders are usually described by their output rate (8 kilobits/sec, etc.) 

and the type of algorithm they use.  Here’s a list of the vocoders used in 
currently popular wireless technologies:

bits/sec

64k

32k

32k

16k

13/7/4/2 v

13k

9.6k

8k

6.7k

6.4k

8/4/2/1 v

8/4/2/1 v

4.8k

2.4k

Algorithm

log PCM

ADPCM

LD-CELP

APC

QCELP

RPE-LTP

MPLP

VSELP

VSELP

IMBE

QCELP

QCELP

CELP

LPC-10

Standard (Year)

CCITT G.711 (1972)

CCITT G.721 (1984)

CCITT G.728 (1992)

Inmarsat-B (1985)

CTIA, IS-54/J-Std008 (1995) 
CDMAPan-European DMR, GSM (1991)

BTI Skyphone (1990)

CTIA IS-54 (1993) TDMA

Japanese DMR (1993)

Inmarsat-M (1993)

Enhanced Vocoder, 1997 CDMA

CTIA, IS-95 (1993) CDMA

US, FS-1016 (1991)

US, FS-1015 (1977)

MOS

4.3

4.1

4.0

n/avail

n/avail

3.5

3.4

3.5

3.4

3.4

n/avail

3.4

3.2

2.3

8k EFRC IS-136 (1997) TDMA enhanced n/avail
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CONCLUSIONS AND LESSONS LEARNED

- Many applications of Adaptive Filters are applicable 
and necessary within the ATN and AMSS

-The dynamic nature of the system, mobility, makes 
adaptive systems more critical

-generic and general results are shown for a LMS and 
TLMS adaptive filters, with TLMS showing 
improvement


